Abstract
In this paper we study the state of stress and strain in infinite elastic slabs of nonlinear viscoelastic solids containing elliptic holes subject to an uni-axial as well as a bi-axial state of stress. The geometry affords one to get some inkling concerning the states of stress and strain in bodies containing a crack by obtaining the limit of the solutions as the aspect ratio (in this case the ratio of the minor axis to the major axis) of the ellipse tends to zero. We consider two classes of non-linear viscoelastic bodies, the classical incompressible Kelvin–Voigt solid (Thomson in R Soc Lond 14:289–297, 1865; Voigt in Ann Phys 283(12):671–693, 1892) and a generalization of a compressible model due to Gent (Rubber Chem Technol 69(1):59–61, 1996). We also study for the sake of comparison the case of a nonlinear neo-Hookean elastic solid with an elliptic hole.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.