Abstract

Deformation response of ferrite and martensite in a commercially produced dual-phase sheet steel with a nominal composition of 0.15% C–1.45% Mn–0.30% Si (wt.%) was characterized by nanoindentation and uniaxial compression of focused ion beam-milled cylindrical micropillars (1–2μm diameter). These experiments were conducted on as-received and pre-strained specimens. The average nanoindentation hardness of ferrite was found to increase from ∼2GPa in the as-received condition to ∼3.5GPa in the specimen that had been pre-strained to 7% plastic tensile strain. Hardness of ferrite in the as-received condition was inhomogeneous: ferrite adjacent to ferrite/martensite interface was ∼20% harder than that in the interior, a feature also captured by micropillar compression experiments. Hardness variation in ferrite was reversed in samples pre-strained to 7% strain. Martensite in the as-received condition and after 5% pre-strain exhibited large scatter in nanoindentation hardness; however, micropillar compression results on the as-received and previously deformed steel specimens demonstrated that the martensite phase in this steel was amenable to plastic deformation and rapid work hardening in the early stages of deformation. The observed microscopic deformation characteristics of the constituent phases are used to explain the macroscopic tensile deformation response of the dual-phase steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.