Abstract

In this paper, we will first clarify the physical meaning of having a minimum measurable time. Then we will combine the deformation of the Dirac equation due to the existence of minimum measurable length and time scales with its deformation due to the doubly special relativity. We will also analyze this deformed Dirac equation in curved spacetime, and observe that this deformation of the Dirac equation also leads to a nontrivial modification of general relativity. Finally, we will analyze the stochastic quantization of this deformed Dirac equation on curved spacetime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.