Abstract

Background and purposeThe pathophysiology of the clinical manifestations in normal pressure hydrocephalus (NPH) remains obscure. Ventricular dilatation could generate forces on the paracentral fibers of the corona radiata (CR), hence interfering with their function and producing the classical clinical triad. The analysis of the regional displacement and deformation of the white matter bundles, forming the corona radiata and internal capsule, may clarify the relationship between ventricular dilatation and clinical manifestations in NPH. MethodAn experimental finite element (FE) analysis was used to simulate ventricular dilatation in 3 dimensions (3D) and to calculate the strain and deformation on the surrounding parenchyma. Magnetic resonance diffusion tensor imaging-based white matter tractography was then applied to retrieve the displacement and deformation exerted along various fiber bundles of the corona radiata and internal capsule. Anterior and posterior limb displacements and elongations were compared using a paired samples t-test. ResultsThe internal capsule, hence the corona radiata, of each cerebral hemisphere was segmented into anterior and posterior limbs. Mean displacements and elongations were calculated for each limb. Mean displacement was significantly larger in the anterior limb whereas mean deformation was larger in the posterior limb (P<0.01). ConclusionThe present simulation demonstrates that ventricular dilatation does not have a homogeneous effect on the periventricular fibre tracts, with a particular load on the corticospinal tract. The affection of this tract remains thereby a potential factor in the generation of the NPH gait disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call