Abstract

A symmetric group action on the maximal chains in a finite, ranked poset is local if the adjacent transpositions act in such a way that $(i,i+1)$ sends each maximal chain either to itself or to one differing only at rank $i$. We prove that when $S_n$ acts locally on a lattice, each orbit considered as a subposet is a product of chains. We also show that all posets with local actions induced by labellings known as $R^* S$-labellings have symmetric chain decompositions and provide $R^* S$-labellings for the type B and D noncrossing partition lattices, answering a question of Stanley.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.