Abstract

Deformation modeling of an infinite plate of functionally graded materials (FGMs) loaded by normal force to the plate surface is studied. The material properties of FGM plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The governing equations are based on stress-strain relation and the equilibrium force equation. Keeping generality, FGM plate has been assumed as a multilayer with linear material property in each layer while arbitrary exponential material property through the thickness. A plate made of Aluminum and Alumina is considered as an example to illustrate the effects of the volume fraction exponent and number of layers on the plate deformation response. Effects of number of layers on the accuracy of the plate behavior under external load are examined. Results indicate that at every certain power-law (M), there exist a number of layers beyond which no variation can be detected on the plate deformation response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call