Abstract

Deformation properties of venous stents based on braided design, chevron design, Z design, and diamond design are compared using in vitro experiments coupled with analytical and finite element modelling. Their suitability for deployment in different clinical contexts is assessed based on their deformation characteristics. Self-expanding stainless steel stents possess superior collapse resistance compared to Nitinol stents. Consequently, they may be more reliable to treat diseases like May-Thurner syndrome in which resistance against a concentrated (pinching) force applied on the stent is needed to prevent collapse. Braided design applies a larger radial pressure particularly for vessels of diameter smaller than 75% of its nominal diameter, making it suitable for a long lesion with high recoil. Z design has the least foreshortening, which aids in accurate deployment. Nitinol stents are more compliant than their stainless steel counterparts, which indicates their suitability in veins. The semi-analytical method presented can aid in rapid assessment of topology governed deformation characteristics of stents and their design optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.