Abstract

The deformation-induced splitting of isoscalar giant monopole resonance (ISGMR) is systematically analyzed in a wide range of masses covering medium, rare-earth, actinide, and superheavy axial deformed nuclei. The study is performed within the fully self-consistent quasiparticle random-phase-approximation (QRPA) method based on the Skyrme functional. Two Skyrme forces, one with a large (SV-bas) and one with a small (SkP) nuclear incompressibility, are considered. The calculations confirm earlier results that, due to the deformation-induced E0-E2 coupling, the isoscalar E0 resonance attains a double-peak structure and significant energy upshift. Our results are compared with available analytic estimations. Unlike earlier studies, we get a smaller energy difference between the lower and upper peaks and thus a stronger E0-E2 coupling. This in turn results in more pumping of E0 strength into the lower peak and more pronounced splitting of ISGMR. We also discuss widths of the peaks and their negligible correlation with deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.