Abstract
Background: Mg 24 is a strongly deformed nucleus in the ground state. Deformation effects can be observed in the structure of the isoscalar giant monopole and quadrupole resonances. Mg 24 is also a nucleus that is well known to present different types of cluster-oscillation modes. Both giant resonances and cluster states are strongly populated by isoscalar transitions. Purpose: To extract the E 0 , E 1 , and E 2 transition strengths via Li 6 scattering. The Li 6 probe is a powerful tool for investigating the isoscalar nuclear response with a very favorable ratio of resonance-to-continuum background. Method: Double-differential cross sections of Li 6 inelastic scattering, at the beam energy of 100 MeV/u, were measured in the excitation-energy range 10 – 40 MeV and scattering angles 0 − 3 ∘ . A multipole-decomposition analysis was performed for extracting the isoscalar E 0 , E 1 , and E 2 strength distributions. Results: The extracted multipole strengths were compared with predictions from consistent quasiparticle random phase approximation calculations. The theoretical predictions are in fair agreement with the experimental data. The E 0 strength was also compared with results from antisymmetrized molecular dynamics calculations found in the literature. A few peaks in the experimental data might be associated with clustering in Mg 24 . Conclusions: Ground-state deformation effects were observed in the isoscalar giant monopole resonance (ISGMR) and isoscalar giant quadrupole resonance (ISGQR) distributions. The ISGMR strength is split in two peaks around 19 and 28 MeV. The ISGQR exhibits a pronounced peak at 20 MeV with a broadening at the low-energy region, similar to predictions from microscopic calculations. Signatures of excitation of cluster states were observed in the E 0 response. Further studies including particle-decay measurements will be required to confirm the nature of the observed peaks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.