Abstract
ABSTRACTAn experimental study was made to characterise and model the deformation field in sequential circular indentation of a model strain hardening material. Digital image correlation was used to measure the evolving subsurface deformation field in terms of displacement, strain rate and strain as a function of indentation spacing and depth. These measurements were used to validate a finite element model for complementary simulations. The results identify relationships between sequential indentation parameters and overlap of subsurface strain distributions, maximum subsurface strains and indentation loads. Maximum strain and the degree of strain field overlap in the deformed subsurface were maximised when the ratio of indentation spacing (S) to projected indentation contact length (L) was approximately S/L = [1.1, 1.2]. Also discussed are the implications for understanding process-scale considerations for indentation-based mechanical surface treatments, including energy dissipation and relationship of surface coverage measures to subsurface strain overlap. Relative differences in energy expended were found for conditions that produce similar levels of subsurface plastic strain and strain field overlap. Finally, the role of sequential indentation parameters on strain path changes and path reversals in the deformed subsurface is investigated and discussed in the context of heterogeneous mechanics and corresponding effects on subsurface microstructure evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.