Abstract

The deformation and failure of the uphill roadway on the 3rd horizontal track in the No. 6 Mine of Pingdingshan Coal Group was taken as the engineering background. The similar simulation material of the roadway surrounding rock with quartz sand as the aggregate, cement as the cementing agent, and gypsum powder as the regulator was selected. Through mechanical tests on 25 sets of specimens with different proportions, the best proportion of similar simulated materials for simulating the deformation and failure of the surrounding rock of the roadway was obtained. Later, a large-scale deep mine roadway simulation test system independently developed by the company was used to carry out the roadway deformation and failure test. First, load the test body to the set initial stress state, and then carry out the full-face excavation and unloading of the roadway; finally, load it in the vertical direction until the roadway wall is damaged. It can realize the actual effect of simulation of roadway deformation and failure under the path of “high stress + internal unloading + stress adjustment.” The results showed that after the deep roadway is excavated with preload and high stress, the surrounding rock deformation, failure, and instability of the roadway mainly experience 3 periods: the first period is the period of uniform deformation of the roadway surrounding rock, the second period is the development period of the roadway surrounding rock slab structure, and the third period is the period of instability of the roadway surrounding rock slab structure. Combined with the time period of deformation and failure of the surrounding rock of the roadway, the damage scope of the surrounding rock and the actual situation of the site engineering. A step-by-step combined roadway repair and support plan of “bolt mesh + shotcrete + full-face hollow grouting anchor cable” with hollow grouting anchor cable as the core was determined. The stability of the repaired roadway has been significantly improved, ensuring the long-term use of the roadway.

Highlights

  • Energy and mineral resources are important factors restricting the development of the national economy of all countries in the world

  • E unexcavated rock mass of the underground mine roadway is in a three-dimensional stress state

  • Many rock mechanics workers have carried out systematic research through various methods and means such as theoretical analysis, similar simulation, numerical calculation, and field measurement [4,5,6]

Read more

Summary

Introduction

Energy and mineral resources are important factors restricting the development of the national economy of all countries in the world. In order to study the internal excavation unloading of the surrounding rock of a deep arched roadway, and the deformation and failure process and mechanism of surrounding rock induced by stress adjustment in the later stage, the self-developed large-scale deep mine roadway simulation test system was used to carry out a similar simulation test of “high ground stress + excavation unloading + stress adjustment.” e ways of deformation and failure instability of the surrounding rock of the roadway were analyzed; on this basis, a step-by-step combined roadway repair and support program of “anchor mesh and shotcrete + full-face hollow grouting anchor cable” with the hollow grouting anchor cable as the core was determined, and engineering verification was carried out, and the surrounding rock control of the roadway was in good condition

General Situation and Deformation Characteristics of Roadway Engineering
Overview of Roadway Engineering
Model Making and Roadway Excavation Loading Test
30 Uniform deformation period
Roadway Support Principle and Support Plan
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call