Abstract

We present a fully quantum mechanical theory to study the effects of deformation on various reaction observables in the Coulomb breakup of neutron rich exotic medium mass nuclei on heavy targets within the framework of finite range distorted wave Born approximation by using a deformed Woods–Saxon potential. As an application of this theory, we calculate the one-neutron removal cross section, relative energy spectra, parallel momentum distributions and angular distributions in the breakup of 31Ne on Pb and Au targets at 234 MeV/u. We suggest ways to put constraints on the large uncertainty in the one-neutron separation energy of 31Ne and also argue that if 31Ne is indeed a halo nucleus then it should be a deformed one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.