Abstract

Mechanical behaviour and structural changes, such as the evolution of grain and dislocation structures and the formation of slip lines and grain-boundary-sliding traces, of a submicron-grained (SMG) copper during room-temperature compression have been studied. It is suggested that the absorption of dislocations into grain boundaries (GBs) is due to the migration and sliding of some highly non-equilibrium GBs during the deformation process and is influenced by high level internal stresses. From this point of view, the unusual behaviour of SMG copper, in particular, the high yielding and flow stresses, the absence of strain hardening, high plasticity and low strain rate sensitivity, are explained. Analogies of the mechanical behaviour of SMG copper with mechanical properties of metallic materials at large plastic strains in stage IV are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call