Abstract

Research provided herein studies the response of fiber-reinforced polymer (FRP) reinforced engineered cementitious composite (ECC) members, focusing on flexural load-deformation behavior, residual deflection, damage evolution, and failure mode. Critical aspects of conventional FRP-reinforced concrete members are reviewed and compared to FRP reinforced ECC. The interaction of linear FRP reinforcement and ECC matrix with ductile stress-strain behavior in tension results in nonlinear elastic flexural response characteristics with stable hysteretic behavior, small residual deflection, and ultimately gradual compression failure. Compatible deformations of reinforcement and matrix lead to low interfacial bond stress and prevent composite disintegration by bond splitting and cover spalling. Flexural stiffness and strength as well as crack formation and widths in FRP-reinforced ECC members are found effectively independent of interfacial bond properties due to the tensile deformation characteristics of the cementitious matrix. A model for the load-deflection envelope based on a nonlinear moment-curvature relationship is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.