Abstract

A computational study of the deformation and surface wave properties of nonturbulent round liquid jets in gaseous crossflow is described. The objective of the study was to consider effects of liquid viscosity, liquid/gas density ratio, and crossflow Weber number that are representative of practical sprays. Three-dimensional computations of the deformation of round liquid jets in gaseous crossflow were carried out using FLUENT software utilizing its Volume of Fluid (VOF) module. The computations were evaluated satisfactorily based on earlier measurements of the properties of nonturbulent round liquid jets in crossflow (liquid jet deformation and surface waves) and revealed three-dimensional properties of the surface waves that could not be observed by previous measurements that were taken from the side of the jet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.