Abstract

Both electrostatic and dispersive (van der Waals) forces contribute to particle adhesion, which has a significant effect on toner transfer in the electrophotographic process. Several approaches to adhesion measurements have yielded a large range of results for a variety of particle and environmental conditions. We present adhesion measurements taken in different environments using the metered air pulse method. They yield significantly different removal forces as a function of temperature for the same average particle charge. Particle deformation due to a combination of changes in particle stiffness with temperature and compressive electrostatic forces can predict the resulting adhesion increase. The morphology change is one of several factors which can contribute to the measured adhesion, which is significantly higher than values obtained by considering only the charged particle monopole and its image. Additionally, non-uniform charging in controlled adhesion experiments provides further muddling between the electrostatic and dispersive forces. This result is due to the electrostatic force having a component which is independent of the nominal charge under certain conditions. We find that the adhesion forces can be fully cubic with respect to the average particle charge, and that the components of the adhesion force may be much more difficult to decouple than previously thought.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.