Abstract

A model is presented for the analysis of the electric field and electrostatic adhesion force produced by interdigital electrodes. Assuming that the potential varies linearly with distance in inter-electrode gaps, the potential distribution on the electrode plane is obtained by taking the first-order Taylor series approximation. The expressions of electric field components are then derived by solving the Laplace equation for the electrical potential in each subregion. The electrostatic adhesion force is calculated using the Maxwell stress tensor formulation. The dynamic properties of the electric field and electrostatic adhesion force are assessed by evaluating the transient response of the field and force under a step in applied voltages. To verify the model developed, an experimental study is carried out in conjunction with the theoretical analysis to evaluate the adhesion performance of an electrode panel on a glass pane. A double tracked wall climbing robot is designed and tested on various wall surfaces. The limit of the approximation method of the inter-electrode potential is discussed. It is found that vacuum suction force is involved in the adhesion. The influence of this vacuum suction force on electrostatic adhesion is also discussed. The results of this work would provide support for theoretical guidelines and system optimization for the electrostatic adhesion technology applied to wall climbing robots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.