Abstract
This paper describes a fundamental investigation of a new shock wave application in a drug delivery system (DDS) using a microcapsule including a single gas bubble. In this study, to design effective disintegrated microcapsule using a microjet, bubble deformation by shock waves near a curved elastic wall, which is the model of this microcapsule, is observed in an optical shadowgraph system using a high-speed camera and analyzed by image processing. The results show that a bubble compresses after shock wave propagation and the minimum radius of the bubble decreases with its distance to the model wall. During its expansion, a bubble near the wall extends locally and sharply, and then collapses. This deformation speed is estimated of microjet speed. Deformation speed has the peak against the initial bubble position from the wall, and can be controlled by changing the kind of bubble gas, the position of the initial bubble, and the elasticity and curvature of the wall. Therefore, it is found that changing these parameters a microcapsule can control the degree of its disintegration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.