Abstract
Deformable and miniaturized energy storage devices are essential for powering soft electronics. Herein, we fabricate deformable micro supercapacitors (MSCs) based on eutectic gallium-indium liquid metal (EGaIn) current collectors with integrated graphene. The well-define interdigitated electrode patterning with controlled gap is successfully realized by using the laser ablation because of a strong laser absorption of graphene and EGaIn. By judicious control of gap size between neighboring interdigitated electrodes and mass loading of graphene, we achieve a high areal capacitance (1336 µF cm−2) with reliable rate performance. In addition, owing to the intrinsic liquid characteristics of EGaIn current collector, the areal capacitance of fabricated MSC retains 90% of original value even after repetitive folding and 20% stretching up to 1000 cycles. Finally, we successfully integrate deformable MSC with a commercial light-emitting diode to demonstrate the feasibility of MSC as a deformable power source. The fabricated MSCs operate stably under various mechanical deformations, including stretching, folding, twisting, and wrinkling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.