Abstract

The absorption performance of a nano-structured hydroxyapatite produced from a combined ultrasonic and microwave technique was examined for the removal of fluoride from contaminated water. The effect of physical and chemical parameters such as initial pH, contact time, initial fluoride concentration and temperature were investigated. The results indicated that the equilibrium adsorption data followed both the Langmuir and Freundlich isotherms, with a maximum monolayer adsorption capacity of 5.5 mg/g at 298 K. In addition, the kinetic studies have shown that the fluoride adsorption data followed a pseudo-second order model and that the intra-particle diffusion process played a significant role in determining the rate. The thermodynamic analysis also established that the adsorption process was endothermic and spontaneous. The initial and final fluoride loaded nano-hydroxyapatite samples were characterized using FESEM, TEM, XRD, FTIR and XPS methods. The analysis revealed that structural changes to the adsorbent had taken place.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.