Abstract

Rapid, sensitive, and reliable detection of aromatic amines, toxic manufacturing byproducts, has been previously achieved with molecular vibrations in the mid-infrared (Mid-IR) region. However, Mid-IR spectroscopic tools are hampered by a need to prepare the samples and the sensor cost. Here, we develop an affordable label-free sensor on a chip, operating in near-infrared (NIR) for ultrasensitive detection of absorption line signatures based on molecular vibrations overtones of the aromatic amine N-methylaniline probe molecule. We design a perforated silicon rib waveguide and fabricate it by milling cylindrical inclusions through the waveguide core. The molecular signatures were monitored when waveguides are embedded in toxic N-methylaniline, experiencing a deflected Talbot effect. We observed that when the Talbot effect is deflected, the absorption lines in NIR are enhanced despite the weakly absorbing nature of the probe molecules. This new spectroscopic strategy can potentially be extended to detect other common toxic byproducts in a chip-scale label-free manner and to enhance the functionality of chemical monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.