Abstract
BackgroundHousekeeping genes (HKG) are constitutively expressed in all tissues while tissue-enriched genes (TEG) are expressed at a much higher level in a single tissue type than in others. HKGs serve as valuable experimental controls in gene and protein expression experiments, while TEGs tend to represent distinct physiological processes and are frequently candidates for biomarkers or drug targets. The genomic features of these two groups of genes expressed in opposing patterns may shed light on the mechanisms by which cells maintain basic and tissue-specific functions.ResultsHere, we generate gene expression profiles of 42 normal human tissues on custom high-density microarrays to systematically identify 1,522 HKGs and 975 TEGs and compile a small subset of 20 housekeeping genes which are highly expressed in all tissues with lower variance than many commonly used HKGs. Cross-species comparison shows that both the functions and expression patterns of HKGs are conserved. TEGs are enriched with respect to both segmental duplication and copy number variation, while no such enrichment is observed for HKGs, suggesting the high expression of HKGs are not due to high copy numbers. Analysis of genomic and epigenetic features of HKGs and TEGs reveals that the high expression of HKGs across different tissues is associated with decreased nucleosome occupancy at the transcription start site as indicated by enhanced DNase hypersensitivity. Additionally, we systematically and quantitatively demonstrated that the CpG islands' enrichment in HKGs transcription start sites (TSS) and their depletion in TEGs TSS. Histone methylation patterns differ significantly between HKGs and TEGs, suggesting that methylation contributes to the differential expression patterns as well.ConclusionWe have compiled a set of high quality HKGs that should provide higher and more consistent expression when used as references in laboratory experiments than currently used HKGs. The comparison of genomic features between HKGs and TEGs shows that HKGs are more conserved than TEGs in terms of functions, expression pattern and polymorphisms. In addition, our results identify chromatin structure and epigenetic features of HKGs and TEGs that are likely to play an important role in regulating their strikingly different expression patterns.
Highlights
Housekeeping genes (HKG) are constitutively expressed in all tissues while tissueenriched genes (TEG) are expressed at a much higher level in a single tissue type than in others
HKGs and TEGs We identified 1,522 HKGs from a total of 18,149 genes in 42 normal human tissues monitored on the microarray
Using high quality microarray gene expression profiling data, we identified a small subset of housekeeping genes that are highly expressed in 42 diverse normal tissues with small variation in expression level across these tissues
Summary
Housekeeping genes (HKG) are constitutively expressed in all tissues while tissueenriched genes (TEG) are expressed at a much higher level in a single tissue type than in others. HKGs serve as valuable experimental controls in gene and protein expression experiments, while TEGs tend to represent distinct physiological processes and are frequently candidates for biomarkers or drug targets. Some genes are constitutively expressed in all tissues and their expression levels are comparatively constant across different cell types. These genes have been referred to as housekeeping genes (HKGs) and are hypothesized to constitute a small set of genes required to maintain minimum basic cellular function [1]. The expression of many of the genes currently used for such purposes, varies across different cell types and conditions, and there is a need for a better set of HKGs that have stable, high expression levels across a large number of tissues
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.