Abstract

Tensegrity mechanisms using linear springs as tensioned elements constitute an interesting class of mechanisms. When considered as manipulators, their workspace remains however to be defined in a generic way. In this article, we introduce a workspace definition and at the same time a computation method, based on the estimation of the workspace boundaries. The method is implemented using a continuation method. As an example, the workspace assessment of a two degrees of freedom (DOF) planar tensegrity mechanism is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.