Abstract

Cells are constantly subjected to a variety of intrinsic and extrinsic stresses—oxidative, protein misfolding, osmotic—and respond by activating a range of molecular pathways to mitigate and repair damage—oxidative stress response, unfolded protein response, osmotic stress response. While individual stress response pathways have been described in detail, and some interventions improve resistance to multiple forms of stress (e.g. dietary restriction, insulin signaling inhibition), surprisingly little is known about how these responses differ when cells are challenged with multiple types of stress simultaneously. The molecular architecture underlying multi-stress response has broad implications for aging and age-associated disease. One characteristic of aging is a progressive increase in multiple categories of cellular stress accompanied by a decline in cellular stress response capability. Human diseases rarely involve a single form of stress—Alzheimer’s disease is characterized by neuroinflammation, oxidative stress, and misfolded proteins, while cancer exhibits oxidative stress, DNA damage, and localized hypoxia. Determining how cells respond differently to one form of stress in the presence of another is critical to building an accurate model of the aging cellular environment. We are using Caenorhabditis elegans to systematically evaluate the molecular network that cells employ when challenged by multiple simultaneous stressors and how different stress combinations impact organismal survival and health. Here we present our initial characterization of C. elegans response to multiple categories of cellular stress (oxidative, osmotic, ER, Golgi, heavy metal), which stressors elicit non-additive interactions when combined, and how these combinations impact survival, health, and established stress response pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.