Abstract

Complexity of the profile being extruded plays a critical role in die design, die reliability, process aberrations, and product defects. Engineering common sense dictates that a more complex die should require a larger amount of extrusion force or pressure. This has been experimentally substantiated by the authors in a recent study. According to a basic definition, therefore, extrusion shape complexity is the ratio of the pressure required to extrude a complex profile to the pressure required for a solid circular profile of the same area. Most of the complexity definitions reported in published literature are based on this interrelationship between extrusion pressure and profile complexity. From a die reliability viewpoint, a complex profile is more difficult to extrude than a simple one, and it generates more stresses in the die. It should therefore lead to an earlier die failure. Another study by the authors confirms that the working life of hot extrusion dies is definitely affected by profile complexity. Reported complexity definitions provide some sort of index to measure extrudability, and can thus be used for pressure prediction to a certain degree. Unfortunately, none of these definitions addresses the very important issue of die reliability, and they generally yield a counterintuitive trend of increasing die life with increasing complexity. None of these definitions includes all the significant geometrical features of a die profile. This article reports the development of two new definitions of shape complexity (linear and power-law) incorporating all significant geometrical features of an extrusion die profile. Die failure data from a large commercial extrusion facility have been collected and analyzed. Regression-based models have been developed for prediction of die failure on the basis of complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.