Abstract

Defective capital assets may be quickly restored to their operational condition by replacing the item that has failed. The item that is replaced is called the Line Replaceable Unit (LRU), and the so-called LRU definition problem is the problem of deciding on which item to replace upon each type of failure: when a replacement action is required in the field, service engineers can either replace the failed item itself or replace a parent assembly that holds the failed item. One option may be fast but expensive, while the other may take longer but against lower cost. We consider a maintenance organization that services a fleet of assets, so that unavailability due to maintenance downtime may be compensated by acquiring additional standby assets. The objective of the LRU-definition problem is to minimize the total cost of item replacement and the investment in additional assets, given a constraint on the availability of the fleet of assets. We link this problem to the literature. We also present two cases to show how the problem is treated in practice. We next model the problem as a mixed integer linear programming formulation, and we use a numerical experiment to illustrate the model, and the potential cost reductions that using such a model may lead to.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call