Abstract

One of the main obstacles in using mixed integer linear programming (MILP) formulations for large-scale open pit production scheduling is the size of the problem. The objective of this work is to develop, implement, and verify deterministic MILP formulations for long-term large-scale open pit production scheduling problems. The objective of the model is to maximize the net present value, while meeting grade blending, mining and processing capacities, and the precedence of block extraction constraints. We present four MILP formulations; the first two models are modifications of available models; we also propose, test and validate two new MILP formulations. To reduce the number of binary integer variables in the formulation, we aggregate blocks into larger units referred to as mining-cuts. We compare the performances of the proposed models based on net present value generated, practical mining production constraints, size of the mathematical programming formulations, the number of integer variables required in formulation, and the computational time required for convergence. An iron ore mine case study is represented to illustrate the practicality of the models as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call