Abstract

Scleroderma, characterized by extensive fibrosis and vascular alterations, involves excessive fibroblast activation, uncontrolled inflammation, and abnormal collagen deposition. Previous studies showed that administrations of either 1,25(OH)2D3 or vitamin D analog effectively decreased or reversed skin fibrosis by regulating the extracellular matrix homeostasis. The actions of 1,25(OH)2D3 are mediated by the vitamin D receptor (VDR), a transcription regulator crucial for skin homeostasis. Although evidence suggests that keratinocyte-fibroblast interaction influences the development of scleroderma, the role of keratinocytes in scleroderma remains unknown. Here, we demonstrated that the ablation of VDR in keratinocytes greatly exacerbated dermal fibrosis in HOCl-induced scleroderma in mice. The deficiency of VDR in the epidermis marked increased dermal thickness, inflammatory cell infiltration, and severe collagen deposition in comparison to the control group in HOCl-treated skin. Moreover, significant elevations in expression levels of mRNA for collagen overproduction (Col1A1, Col1A2, Col3A1, α-SMA, MMP9, TGF-β1) and proinflammatory cytokines (IL-1β, IL-6, CXCL1, CXCL2) were observed in VDR conditional KO versus control mice following HOCl treatment. Collectively, these results suggest that VDR in keratinocytes plays a pivotal role in scleroderma progression, and the interplay between keratinocytes and fibroblasts deserves more attention regarding the exploration of the pathogenesis and treatment for scleroderma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.