Abstract
Deficiency of a granulocyte surface glycoprotein of 150,000-D had been associated with defective C3- and IgG-dependent phagocytosis in a patient with recurrent bacterial infections. By using monoclonal antibodies, we found that this patient's granulocytes, monocytes, and null cells were deficient in Mo1 (equivalent to OKM1 and Mac-1), a cell surface molecule consisting of two noncovalently linked glycoproteins of 155,000 and 94,000 D. The 155,000-D subunit is closely associated with the human complement receptor that recognizes C3bi and/or a further degradation product termed C3dg (C3bi receptor); the 94,000-D subunit has been shown to be shared, on normal cells, by two other surface membrane glycoproteins: lymphocyte function-associated antigen-1 (LFA-1) and P-150, 95. Both subunits of Mo1 were deficient on the patient's granulocytes as determined by immunoprecipitation with subunit-specific monoclonal antibodies as well as fluorescence analysis. Mol-deficient monocytes, like granulocytes, had defective C3-and IgG-dependent phagocytosis. Natural killing activity by the patient's peripheral blood leukocytes was normal. Mo1-deficient granulocytes and monocytes rosetted normally with sheep erythrocytes coated with C3bi. This rosetting was totally inhibited by a mixture of anti-Mo1 and anti-C3b (the major fragment of C3) receptor antibodies but not by either antibody alone. Since monoclonal antibodies to the 155,000-D subunit of Mo1 can inhibit C3bi receptor binding, immune phagocytosis, opsonized zymosan-induced degranulation, and superoxide generation by normal phagocytes (functions which are defective in Mo1-deficient cells), it appears likely that Mo1 deficiency may in part underlie the functional aberrations leading to recurrent bacterial infections in man.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have