Abstract

Some animals and humans fed a high-energy diet (HED) are diet-resistant (DR), remaining as lean as individuals who were naïve to HED. Other individuals become obese during HED exposure and subsequently defend the obese weight (Diet-Induced Obesity- Defenders, DIO-D) even when subsequently maintained on a low-energy diet. We hypothesized that the body weight setpoint of the DIO-D phenotype resides in the hypothalamic paraventricular nucleus (PVN), where anorexigenic melanocortins, including melanotan II (MTII), increase presynaptic GABA release, and the orexigenic neuropeptide Y (NPY) inhibits it. After prolonged return to low-energy diet, GABA inputs to PVN neurons from DIO-D rats exhibited highly attenuated responses to MTII compared with those from DR and HED-naïve rats. In DIO-D rats, melanocortin-4 receptor expression was significantly reduced in dorsomedial hypothalamus, a major source of GABA input to PVN. Unlike melanocortin responses, NPY actions in PVN of DIO-D rats were unchanged, but were reduced in neurons of the ventromedial hypothalamic nucleus; in PVN of DR rats, NPY responses were paradoxically increased. MTII-sensitivity was restored in DIO-D rats by several weeks’ refeeding with HED. The loss of melanocortin sensitivity restricted to PVN of DIO-D animals, and its restoration upon prolonged refeeding with HED suggest that their melanocortin systems retain the ability to up- and downregulate around their elevated body weight setpoint in response to longer-term changes in dietary energy density. These properties are consistent with a mechanism of body weight setpoint.

Highlights

  • Excess adiposity can be caused by prolonged exposure to a high-energy diet (HED) both in humans and in animals

  • Final body weights in HED-fed rats remained greater than for HED or remained on LED chow (HED-N) even 3 weeks after terminating HED-feeding, we classified them as diet-induced obesity (DIO)-D (583 ± 16g vs. HED-N: 489 ± 19g, p < 0.01)

  • We tested whether GABA inputs to medial parvocellular PVN (mpPVN) cells were sensitive to the synthetic melanocortin analogue, melanotan II (MTII) and neuropeptide Y (NPY) in hypothalamic slices from DIO-D and HED-N OP-CD rats

Read more

Summary

Introduction

Excess adiposity can be caused by prolonged exposure to a high-energy diet (HED) both in humans and in animals. Individuals are either susceptible to diet-induced obesity (DIO) or resistant (DR) to it [1, 2] This variability in diet-susceptibility has been best studied in the animal model of HED-exposed, outbred Sprague Dawley rats [1, 3], which, like humans, maintain excess weight when returned to low energy diets [4, 5]. These animals, which we designate as DIO-defenders (DIO-D), defend elevated body weight setpoints, as do obese humans [6], unlike mice, where genetically-normal strains rarely defend excess weight [7, 8]. DIO-D animals may represent a unique model to study physiological mechanisms underlying intractable obesity

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.