Abstract

Green leaf volatiles (GLVs) can induce defence priming, that is, can enable plants to respond faster or more strongly to future stress. The effects of priming by GLVs on defence against insect herbivores and pathogens have been investigated, but little is known about the potential of GLVs to prime crops against virus transmission by vector insects. Here, we tested the hypothesis that exposure to the GLV Z-3-hexenol (Z-3-HOL) can prime tomato (Solanum lycopersicum) for an enhanced defence against subsequent Tomato yellow leaf curl virus (TYLCV) transmission by the whitefly Bemisia tabaci. Bioassays showed that Z-3-HOL priming reduced subsequent plant susceptibility to TYLCV transmission by whiteflies. Z-3-HOL treatment increased transcripts of jasmonic acid (JA) biosynthetic genes and increased whitefly-induced transcripts of salicylic acid (SA) biosynthetic genes in plants. Using chemical inducers, transgenics and mutants, we demonstrated that induction of JA reduced whitefly settling and successful whitefly inoculation, while induction of SA reduced TYLCV transmission by whiteflies. Defence gene transcripts and flavonoid levels were enhanced when whiteflies fed on Z-3-HOL-treated plants. Moreover, Z-3-HOL treatment reduced the negative impact of whitefly infestation on tomato growth. These findings suggest that Z-3-HOL priming may be a valuable tool for improving management of insect-transmitted plant viruses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.