Abstract
Carrier removal rates and electron and hole trap densities in β-Ga2O3 films grown by hydride vapor phase epitaxy (HVPE) and irradiated with 18 MeV α-particles and 20 MeV protons were measured and compared to the results of modeling. The electron removal rates for proton and α-radiation were found to be close to the theoretical production rates of vacancies, whereas the concentrations of major electron and hole traps were much lower, suggesting that the main process responsible for carrier removal is the formation of neutral complexes between vacancies and shallow donors. There is a concurrent decrease in the diffusion length of nonequilibrium charge carriers after irradiation, which correlates with the increase in density of the main electron traps E2* at Ec − (0.75–0.78) eV, E3 at Ec − (0.95–1.05) eV, and E4 at Ec − 1.2 eV. The introduction rates of these traps are similar for the 18 MeV α-particles and 20 MeV protons and are much lower than the carrier removal rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.