Abstract

Nonpolar a-plane AlGaN epi-layers were grown on a semi-polar r-plane sapphire substrate with an innovative two-way pulsed-flows metal organic chemical vapor deposition growth technology. A root-mean-square value of 1.79 nm was achieved, and the relative light transmittance of the a-plane AlGaN epi-layer was enhanced by 36.9%. These results reveal that the innovative growth method is able to improve the surface morphology and reduce the defect density in nonpolar a-plane AlxGa1–xN epi-layers, particularly those with an Al composition greater than 0.5, which are key materials for the fabrication of nonpolar AlGaN-based high light emission efficiency deep-ultraviolet light-emitting diodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.