Abstract
This work is the first report showing the significance of non-motor microtubule-associated protein in maintaining synaptic plasticity thorough a novel mechanism: anchoring of NMDA receptors to cytoskeleton supports transport of NMDA receptors and stabilizes postsynaptic density scaffolds binding to NMDA receptors. Newly generated mutant mice lacking MAP1A exhibited learning disabilities and reduced synaptic plasticity attributable to disruptions of the anchoring machinery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.