Abstract

SiC is a widely used wide-bandgap semiconductor. Ion implantation is often employed in SiC for doping, defect engineering and transferring of SiC thin films on different substrates. To transfer SiC or to get freestanding thin SiC films by “smart-cut” [Appl. Phys. Lett. 112 (2018) 192102], a large fluence of hydrogen (proton) ion implantation will be applied. Here, we show the structure and defect properties in 6H-SiC single crystals after hydrogen implantation up to a fluence of 5 × 1016 cm−2 at different energies of ions. We present the characterization by Rutherford Backscattering/Channeling spectrometry, Raman spectroscopy and electron spin resonance. Upon H+ ion implantation, point defects are mainly created and cause the lattice vibration softening. Our analysis also suggests that H+ ion implantation induces less lattice disorder than heavy ions at fluences producing the same number of displacements per atom. We also discuss the possible nature of the point defects and their influence on the electrical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.