Abstract
A systematic study of the evolution of the defect morphology and crystalline quality in molecular beam epitaxially grown CdxHg1−xTe epilayers with growth temperature is presented. The layers were characterized with optical microscopy, atomic force microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and high-resolution x-ray diffraction. Four types of defects (microvoids, hillocks, high-temperature voids, and needles) were characterized on epilayers grown in the growth temperature range 188.9−209.9 °C. There is a minimum in the area covered by defects at a temperature just below the onset of Te precipitation, which is defined as the optimal growth temperature. Microvoids with various shapes, and at various stages of growth, were observed side-by-side in many of the CdxHg1−xTe layers, along with hillocks and needles. The defect density of microvoids changes by several orders of magnitude in the studied temperature range. A mechanism for the formation of microvoids and needles is ...
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.