Abstract
Microwave nondestructive testing (NDT) offers promising application prospects due to its advantages of non-contact inspection in detecting defects in non-metallic composites. However, the detection sensitivity of this technology is generally affected by the lift-off effect. To reduce this effect and highly concentrate electromagnetic fields on defects, a defect detection method using scanning instead of moving sensors in the microwave frequency range was proposed. Additionally, a novel sensor based on the programmable spoof surface plasmon polaritons (SSPPs) was designed for non-destructive detection in non-metallic composites. The unit structure of the sensor was made up of a metallic strip and a split ring resonator (SRR). A varactor diode was loaded between the inner and outer rings of the SRR, and by changing the capacitance of this diode using electronic scanning, the field concentration phenomenon of the SSPPs sensor can be moved along a specific direction for defect detection. By using this proposed method and sensor, the location of a defect can be analyzed without moving the sensor. The experimental results demonstrated that the proposed method and designed SSPPs sensor can be effectively applied in detecting defects in non-metallic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.