Abstract

AbstractSingle‐walled aluminosilicate nanotubes (AlSiNTs) are expected to possess mechanical strength comparable to that of single‐walled carbon nanotubes (SWCNTs). Most existing theoretical studies on the mechanical properties of AlSiNTs are based on defect‐free models, despite the fact that experimental results have revealed a variety of defects in AlSiNTs. Herein we developed a method for the modeling of defective AlSiNTs to enable the quantitative investigation of relationships among defect structures, structural stability, and mechanical properties of AlSiNTs. The defect structures dealt with in the proposed models are based on experimental findings. Our assessment of the stability and mechanical strength of nanotubes is based on multiscale computational tools, including density functional theory, molecular modeling, and nanoscale continuum modeling. Our study also identified the defect structure with the most pronounced impact on the stability and mechanical properties of AlSiNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.