Abstract
AbstractWith the rapid advancement of 5G technologies and electronic devices, there is a growing demand for microwave absorbing materials, especially those effective in low frequency microwave bands (2–8 GHz), making it an essential requirement. In recent years, many innovative microwave absorbers have been developed for low frequency absorption, with carbon/magnetic composite materials becoming particularly promising due to their various loss mechanisms and optimized impedance matching characteristics over a wide frequency range. However, there is currently a lack of a comprehensive review that summarizes the findings on low frequency absorbers. This review article thoroughly examines the current research on carbon/magnetic composite materials with efficient absorption performance in the low‐frequency S and C bands. It provides a detailed discussion of the microwave absorption performance of these composite materials. Furthermore, the composite design strategies, synthesis techniques, microstructure performance relationship, and microwave attenuation mechanisms are summarized. Lastly, the challenges and future outlook for low frequency microwave absorbing materials are addressed. This review article aspires to provide new insights into designing and synthesizing composite materials to accomplish effective low‐frequency microwave absorption, thereby promoting practical applications.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.