Abstract
Cells recognize collagen fibrils as the first step in the process of adherence. Fibrils of chicken skin actinidain-hydrolyzed collagen (low adhesive scaffold collagen, LASCol), in which the telopeptide domains are almost completely removed, cause adhering cells to form spheroids instead of adopting a monolayer morphology. Our goal was to elucidate the ultrastructure of the LASCol fibrils compared with pepsin-hydrolyzed collagen (PepCol) fibrils. At low concentration of 0.2 mg/mL, the time to reach the maximum increasing rate of turbidity for LASCol was all slower than that for PepCol. Differential scanning calorimetry showed that the thermal stability of collagen self-assembly changed significantly between pH 5.5 and pH 6.6 with and without a small number of telopeptides. However, the calorimetric enthalpy change did not vary much in that pH range. The melting temperature of LASCol fibrils at pH 7.3 was 55.1 °C, whereas PepCol fibrils exhibited a peak around 56.9 °C. The D-periodicity of each fibril was the same at 67 nm. Nevertheless, the looseness of molecular packing in LASCol fibrils was demonstrated by circular dichroism measurements and immuno-scanning electron microscopy with a polyclonal antibody against type I collagen. As there is a close relationship between function and structure, loosely packed collagen fibrils would be one factor that promotes cell spheroid formation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have