Abstract

Four batches of cerium oxide powders (with nanocrystallite size of 6.9 nm–572 nm) were prepared from four precursor nanopowders by thermal decomposition of Ce-propionate and annealing in air between 250 °C–1200 °C for 10 min–240 min. Ceria formation reactions, structure, vibrational, luminescence and magnetic properties were investigated by differential scanning calorimetry, x-ray diffraction, electron microscopy, infrared spectroscopy, photoluminescence and SQUID. All the samples exhibit room temperature ferromagnetism, RTFM, (with coercivity, Hc, of 8 Oe - 121 Oe and saturation magnetization, Ms, of up to 6.7*10−3 emu/g) and a broad defect-related photoluminescence, PL, emission in the visible range. The samples derived from the same precursor show Ms proportional to the peak area of defect-related PL emission whereas this is not valid for the samples derived from the different precursors. An improvement of ferromagnetism and intensity of defect-related PL emission was observed when annealing the products in which nanocrystalline cerium oxide coexists with Ce - oxicarbonate traces, Ce2O2CO3. The experimental results were explained based on the following considerations: room temperature ferromagnetism was induced by the defective ceria with high concentration of oxygen vacancies generated by decomposition of Ce-propionate; oxygen vacancies of the starting precursor nanopowders could be redistributed (at the surfaces/grain boundaries, GBs) upon heating under conditions that promote an inert local environment; the decomposition of Ce2O2CO3 residues can provide an excess of oxygen vacancies at the nanoparticles surfaces or GBs, which can induce or enhance ferromagnetism; surfaces/GBs rather than bulk defects appear responsible for RTFM – this can explain the (often reported in literature) inconsistency between oxygen vacancies concentration and Ms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.