Abstract
In recent years, leakage, rupture, and perforation accidents in oil and gas pipelines caused by corrosion have increased significantly. Therefore, the online, nondestructive testing of oil and gas pipelines has become essential to maintain their structural integrity. Ultrasonic guided wave detection technology presents advantages, such as high detection efficiency and complete coverage of the pipeline body, which is conducive to popularization and application. This paper considered the natural gas transmission station as the research object, while ultrasonic guided wave technology was used for detection. Ultrasonic guided wave equipment was used to detect the field process pipeline and experimental pipeline, obtaining data samples of the defects and welds. Defects were automatically identified via data processing by combining the characteristic signal method and the BP neural network. The results indicated that the neural network displayed a recognition accuracy of 80.9% for the features and defects in the test samples. By combining the characteristic signal method and the BP neural network, the defect recognition technology can reduce the subjective influence of inspectors while improving recognition efficiency and accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.