Abstract
— Ball valve is a key fluid control equipment used extensively in oil and gas pipelines. The online detection and failure diagnosis of the internal leakage of the ball valve is of great significance to ensure the safety operation of natural gas transmission pipelines. This paper proposes a prediction method of the internal leakage rate and a diagnosis method of the failure mode of the buried pipeline ball valve based on valve cavity pressure detection. Firstly, the valve cavity pressure signal generated by the internal leakage of the ball valve is detected by the pressure sensor, and the valve cavity pressure signal is denoised by wavelet threshold denoising. Then, the back propagation (BP) neural network has the disadvantage of unstable learning ability, so the BP neural network is optimized by chaos sparrow search optimization algorithm (CSSOA-BP). Finally, the prediction model of the ball valve internal leakage rate and the diagnosis model of the ball valve failure mode are established by using CSSOA-BP neural network and the characteristic parameters of the valve cavity pressure signal. To verify the performance of the prediction model and the diagnosis model of CSSOA-BP neural network, the predictive results and diagnostic results are compared with those of the sparrow search algorithm optimization BP (SSA-BP) neural network and BP neural network. The experimental results show that the maximum prediction error of CSSOA-BP neural network is the smallest, which is 13.6%. The accuracy of the diagnostic results of CSSOA-BP neural network is the highest, which is 83.3%. It indicates that the proposed method can achieve better predictive results of the ball valve internal leakage rate and more accurate diagnostic results of the ball valve failure mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.