Abstract

Defect scattering is well known to suppress thermal transport. In this study, however, we perform both molecular dynamics and Boltzmann transport equation calculations, to demonstrate that introducing defect scattering in nanoscale heating zone could surprisingly enhance thermal conductance of the system by up to 75%. We further reveal that the heating zone without defects yields directional nonequilibrium with overpopulated oblique-propagating phonons which suppress thermal transport, while introducing defects redirect phonons randomly to restore directional equilibrium, thereby enhancing thermal conductance. We demonstrate that defect scattering can enable such thermal transport enhancement in a wide range of temperatures, materials, and sizes, and offer an unconventional strategy for enhancing thermal transport via the manipulation of phonon directional nonequilibrium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.