Abstract

The defect regulation and p-n heterojunction of composites have gained significant attention due to their potential applications. Nitrogen (N) as doping heteroatoms and perylene-3,4,9,10-tetracarboximide (PDINH) as an appropriate n-type semiconductor were innovatively and reasonably selected to enhance the photocatalytic performance of pristine p-type cuprous oxide (Cu2O). In this study, the defect regulation of N doping (1) achieved the small-size effect of Cu2O, (2) optimized the electron features, and (3) improved the kinetics of reactive oxygen species. The p-n heterojunction with PDINH was developed to sharply improve the light utilization of Cu2O, from the UV region to the near-infrared region. As expected, the optimized Cu2NxO1–x/PDINH (x = 0.02) exhibited excellent long-term photocatalytic antibacterial activities, with antibacterial rates exceeding 91 % against Staphylococcus aureus and Pseudomonas aeruginosa. Defect regulation and p-n heterojunction of Cu2O-based composites thus provide a great deal of potential for future advancements in photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.