Abstract

An approach to improve the defect density and internal quantum efficiency of near-ultraviolet emitters was proposed using a combination of epitaxial lateral overgrowth (ELOG) and patterned sapphire substrate (PSS) techniques. Especially, a complementary dot array pattern corresponding to the underlying PSS was used for the ELOG-SiO2 mask design. Based on the transmission-electron-microscopy and etch-pit-density results, the ELOG∕SiO2∕GaN∕PSS structure can reduce the defect density to a level of 105cm−2. The internal quantum efficiency of the InGaN-based ELOG-PSS light-emitting diode (LED) sample showed three times in magnitude as compared with that of the conventional GaN/sapphire one. Under a 20mA injection current, the output powers of ELOG-PSS, PSS, and conventional LED samples were measured to be 3.3, 2.9, and 2.5mW, respectively. The enhanced output power could be due to a combination of the reduction in dislocation density (by ELOG) and improved light extraction efficiency (by PSS). Unlike the previ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.