Abstract

AbstractIt is shown that the improved electrical properties of graphene on organic small‐molecule‐based surface doping is dominated by the doping effect of these materials at the defect sites on graphene. It is hypothesized that this may be due to the healing effect of semi‐bulk substitution‐like doping at the defect sites. In this study, defects are intentionally created with varying densities on graphene by exposing it to trifluoro methane (CHF3) plasma for different time periods. The films are then doped by solution spin coating of bis(trifluoromethane)sulfonamide (TFSA). The measured change in electrical conductivity is proportional to the defect density of the graphene, implying a healing effect of these organic small molecular dopants. First principles calculations are performed to capture this mechanism, and the results conform with the experimental observations. The introduction of defects leads to a modulation of the workfunction while adversely affecting the charge carrier transport properties. It is shown that subsequent TFSA doping aids in healing the defective sites thereby improving conduction while maintaining the changed workfunction. The two processes act in tandem for the enhanced electrical properties of graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.