Abstract
In addition to the well-known case of spherical coordinates, the Schrödinger equation of the hydrogen atom separates in three further coordinate systems. Separating in a particular coordinate system defines a system of three commuting operators. We show that the joint spectrum of the Hamilton operator, the z component of the angular momentum, and an operator involving the z component of the quantum Laplace-Runge-Lenz vector obtained from separation in prolate spheroidal coordinates has quantum monodromy for energies sufficiently close to the ionization threshold. The precise value of the energy above which monodromy is observed depends on the distance of the focus points of the spheroidal coordinates. The presence of monodromy means that one cannot globally assign quantum numbers to the joint spectrum. Whereas the principal quantum number n and the magnetic quantum number m correspond to the Bohr-Sommerfeld quantization of globally defined classical actions a third quantum number cannot be globally defined because the third action is globally multivalued.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.