Abstract

The two-dimensional to three-dimensional configuration transition through self-tearing promises the engineering and promising applications of graphene. However, it is challenging to control the tearing path on demand through common thermal and interfacial treatments. In this manuscript, a defect-guided self-tearing technique is proposed to generate wider, longer, and even curved and serrated configurations, which is impossible for defect-free graphene. The underlying tearing mechanisms regarding the advancing displacement are disclosed through molecular dynamics simulations and theoretical model. This study provides a useful guidance to the implementation of complex and functional three-dimensional graphene structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.