Abstract

Shape memory polymers (SMPs) and their composites have broad application prospects in multiple fields due to their unique shape memory effects. However, they still face challenges in accurately controlling the shape recovery process, improving the stability of shape memory loops, and achieving the manufacturing of complex shapes and functions. At present, theoretical models, molecular dynamics (MD) simulations, and additive manufacturing technologies have been widely applied. Theoretical models and MD simulations provide theoretical foundations at both macro and micro levels, respectively. Meanwhile, by combining SMPs and their composites with additive manufacturing, some complex structures can be produced. This not only verifies the accuracy of the theoretical foundation, but also further expands its application. This review aims to review the application and intersection of theoretical models, MD simulations, and additive manufacturing in the research of SMPs and their composites, and analyze how they jointly promote the leap from theory to application, providing valuable insights for future development trends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.